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Département de Physique, Université Laval, Qúebec, Canada G1K 7P4
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Abstract. We study the local conserved charges in integrable spin chains of the XYZ type
with non-trivial boundary conditions. The general structure of these charges consists of a bulk
part, whose density is identical to that of a periodic chain, and a boundary part. In contrast with
the periodic case, only charges corresponding to interactions of even number of spins exist for
the open chain. Hence, there are half as many charges in the open case as in the closed case.
For the open spin-12 XY chain, we derive the explicit expressions of all the charges. For the
open spin-12 XXX chain, several lowest-order charges are presented and a general method of
obtaining the boundary terms is indicated. In contrast with the closed case, the XXX charges
cannot be described in terms of a Catalan tree pattern.

1. Introduction

Recently we have obtained the structure of the local conserved charges for the XXX chain
[1] and some of its generalizations: the isotropicsu(N) spin chain and the octonionic model
[2]. Explicit expressions—in the form of a Catalan tree pattern—have been derived for all
the charges. Different extensions of these results can be considered. In the present work
we study the modification of the Catalan tree pattern for open (finite) chains†.

As for closed chains, there is a transfer matrix formalism for open chains from which the
conserved quantities can be obtained by power expansion in terms of the spectral parameter.
For closed chains, this approach is not an effective way of deriving the explicit expressions
of the conserved charges. In the open case, the situation is even worse as the open transfer
matrix is, roughly speaking, the trace of the square of the closed chain monodromy matrix
(up to boundary terms). A somewhat surprising consequence of this squaring process is
that half of the local conserved charges of the closed chain disappear when the chain is
cut open. More precisely, as we will show below, the expression for the open conserved
charges contain a bulk part and a boundary part. In the infinite chain limit, the boundary
part is irrelevant: the bulk part is thus necessarily the full closed chain charge expression.
Hence, a charge exists in the open case only if suitable boundary terms can be added to the
bulk part to preserve the commutativity of the total charge with the Hamiltonian.

It turns out that conservation preserving boundary terms do not always exist. For
instance, for the XY closed chain, there are two infinite sequences of local charges, that
is, {H(1)

n } and {H(2)
n }, for all integer values ofn, wheren indicates the highest number

of adjacent spin factors of the charge density. In the open case, there are no appropriate
boundary counterterms for half of these charges. There remains only one charge for each
value ofn. For the closed XXX chain, we know that there exists one local chargeHn for

† As far as the pattern of charges is concerned, the infinite open chain is not distinguishable from the closed case.
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each positive integern. However, for the open XXX case, only the charges withn even
survive. In particular,H3 does not exist!

A major technical difficulty encountered in deriving explicit expressions for the
conserved charges for open chains is caused by the non-existence of a boost operator,
whose commutation with the Hamiltonian would generate the higher-order charges. As a
result, there is no systematic and effective way of obtaining the expressions for the first
few charges. In spite of this, one could try to find them by brute force and see whether
an underlying pattern emerges. From the expressions ofH4 andH6 obtained for the XXX
open chain, this would seem to be so: their boundary parts can be written in terms of
the same spin polynomials as their bulk part and they can actually be expressed in terms
of lower-order ‘bulk charges’ localized at the boundaries. However, this is not a generic
feature:H8 cannot be written in this polynomial basis.

The paper is organized as follows. In the next section, we review the transfer matrix
formalism. This is used to show the absence of odd degree local conserved charges. A
second argument is worked out in the following section, from a computational approach:
the charge is written as a sum of a (known) bulk piece and a set of boundary counterterms
to be fixed. We show that inHn the counterterms must cancel a Catalan-tree bulk-type
charge localized at each boundaries. We then demonstrate that no such terms can be found
for H3 and then for allH2n+1. The explicit form of the first few non-trivial charges is
presented. Unfortunately the simple polynomial basis used to describe the closed XXX
charge is inadequate in the open case, thus making it very hard to find a general expression
for all the charges. Straightforward generalizations and conclusions are reported in the final
section.

2. The general structure of local conservation laws in open chains

In this section we briefly recall the transfer matrix formalism and use it to determine the
general structure of conservation laws in open spin chains. This will be done first for
the relatively simple spin-12 XXX model, and later the extension of the argument to more
general integrable chains will be indicated.

The integrable spin chain with non-trivial boundary conditions [3] is described by the
transfer matrix

to(u) = tr(K+(u)T(u)K−(u)T−1(−u)). (2.1)

u is the spectral parameter andT(u) is the monodromy matrix, whose trace gives the usual
(closed) chain transfer matrix:

tc(u) = tr T(u) (2.2)

(the subscripts ‘o’ and ‘c’ refer to open and closed cases, respectively). The monodromy
matrix is constructed from the basicR-matrix of the model

T(u) = RN0 · · ·R10. (2.3)

The index i = 1, . . . , N labels a vector space at site numberi and 0 refers to internal
or auxiliary space, over which the trace in (2.1) is taken.K+ and K− are left and right
boundary matrices, respectively. For the XYZ model, the most general form of these
matrices compatible with integrability has been derived in [4]. For free open boundaries,
to which we confine ourselves for the most part of this work,K± = I, the 2× 2 identity
matrix.

The transfer matrix can be used as a generating function for the conserved quantities. It
follows from the Yang–Baxter equation that any derivative of the transfer matrix commutes



Conserved charges in open spin chains 7637

with the Hamiltonian (which is, by construction, the first logarithmic derivative of the
transfer matrix, taken at the particular valueu = 0 of the spectral parameter). The quantities
obtained in this way are, however, nonlocal, i.e. they contain spin interactions at distances
growing arbitrarily when the length of the chain is increased. To obtain local conserved
quantities out of the transfer matrix, one needs to take logarithmic derivatives [5]. The
argument of L̈uscher, showing the local nature of the logarithmic derivatives oftc(u) at
u = 0, remains valid for open chains. However, there are two new features in the open case
as compared to the periodic one. First, translational invariance is obviously lost. Second,
and more surprisingly, all charges with an odd number of interacting spins disappear!

We will first concentrate on the spin-1
2 XXX chain, whoseR-matrix takes the simple

form

R = uI + P (2.4)

whereP is the permutation operator. The derivatives of the transfer matrix of the closed
chain are

t(n)
c (0) ≡ dntc(u)

dun

∣∣∣
u=0

= n!
∑

|C|=N−n

PR(C) (2.5)

where the sum goes over all ordered clustersC of (N −n) points, that is, sets{i1, . . . , iN−n}
with i1 < i2 < · · · < iN−n. PR(C) and PL(C) (appearing below) denote the cyclic
permutation of the spins of the sequenceC to the right or to the left, respectively. In
particular,

tc(0) = PR(3) (2.6)

where3 = {1, 2, . . . , N}. The logarithmic derivatives of the transfer matrix yield local
charges. In particular, using

t−1
c (0) = PL(3) (2.7)

it can be easily seen that

t−1
c (0)t(1)

c (0) =
N∑

i=1

PR({i, i + 1}) =
N∑

i=1

Pi,i+1. (2.8)

The permutation operator above can be written as

Pi,i+1 = 1
2(1 + σi · σi+1) (2.9)

(whereσi denotes a Pauli matrix at sitei) and thus (2.8), up to a constant, coincides with
the Hamiltonian of the periodic XXX chain.

Let Qc
n denote the(n − 1)th logarithmic derivative oftc(u) at u = 0:

Qc
n = dn−1

dun−1
ln tc(u)|u=0. (2.10)

In terms ofvk defined as

vk = T−1(0)T(k)(0) (2.11)

we have

Qc
n = tr vn−1 + tr pn−1(v1, . . . , vn−2) (2.12)

wherepn−1 is a homogeneous polynomial (of degreen − 1) in v1, . . . , vn−2. These charges
are translationally invariant and can be written in the form

Qc
n =

N∑
j=1

qn(j) (2.13)
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where the densityqn(j) contains interactions of at mostn spins on sites{j, j + 1, . . . , j +
n − 1} (addition understood moduloN ).

Consider now the chain with open free boundaries (K± = I). Conserved charges may
be obtained from the expansion of the logarithm of the transfer matrixto(u):

Qo
n = dn−1

dun−1
ln to(u)|u=0. (2.14)

We will now argue that forn even, the leading term—that with the greatest number of
interacting spins—in the above expression is the same as in the closed case. Taking the
trace over the two-dimensional auxiliary space, we obtain

to(0) = 2I (2.15)

whereI is the 2N × 2N identity matrix. Therefore,t−1
o (0) is simply 1

2, and

Qo
n = 1

2t(n−1)
o (0) + pn−1(

1
2t(1)

o (0), . . . , 1
2t(n−1)

o (0)) (2.16)

wherepn−1 is the same polynomial as in (2.12). Consider firstn to be even. From (2.1)
we get

t(n−1)
o (0) = 2 trvn−1 + tr rn−1 (2.17)

where rn−1 is a homogeneous polynomial of degreen − 1 in the variablesv1, . . . , vn−2.
Note that (2.16) and (2.12) both contain the same local term

tr vn−1 ∼
∑

i

PR({i, i + 1, . . . , i + n − 2}) (2.18)

(with the addition understood moduloN for the closed chain). For the closed XXX chain,
the set of local conserved charges obtained from the transfer matrix has been shown to be
complete (see [6]). This means that any local conserved quantity in the closed chain must be
a linear combination of the logarithmic derivatives of the transfer matrixtc(u). In particular,
this implies that given the leading term inQc

n (the one describingn-spin interactions), there
is a unique set of subleading terms ensuring the commutativity ofQc

n with the Hamiltonian.
The introduction of non-trivial boundary conditions can be viewed as a perturbation of the
original periodic chain† and this can only reduce the number of conservation laws. The
key point is that, as can be seen from (2.16) and (2.12) forn even, the leading term of a
chargeQo

n must be the same as for the closed chain. Consider now the infinite limit of the
open chain. Obviously, in this limit (2.10) must coincide with some function of conserved
quantities for the infinite periodic chain, but the only local conserved quantities in this case
are linear combinations of the chargesQc

n. Therefore, the bulk density of the open chain
n-spin chargeQo

n must be the same as the density ofQc
n. It follows that forn = 2m, Qo

2m

has the form

Qo
2m = Qbulk

2m + qL
2m + qR

2m (2.19)

where

Qbulk
2m =

N−2m+1∑
j=1

q2m(j) (2.20)

(i.e. we take only clusters that do not ‘jump’ over the boundary) andqL
2m (qR

2m) stands for
boundary terms at the left (right) boundary. As we will show in section 3, the boundary
terms involve at most the 2m − 2 spins adjoining the boundary.

† If Hc denotes the Hamiltonian of a periodic spin chain with nearest-neighbour interactions,Hc = ∑N
j=1 hj,j+1,

by adding the single perturbation term−h1,N one obtains the open-ended chainHo = Hc − h1,N .
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In contrast, whenn is odd, i.e.n = 2m + 1, there is no totally local term inQo
n:

Qo
2m+1 = p2m( 1

2t(1)
o , . . . , 1

2t(n−1)
o ) (2.21)

and then-spin contribution vanishes. In consequence, the bulk part ofQo
2m+1 is zero,

implying that forn odd,Qo
n must be trivial.

The absence of odd-order charges is in fact a simple consequence of the chain reversal
symmetry of the open chain, i.e. its invariance under the transformation

σn → σN−n+1. (2.22)

This symmetry is specific to the open case: the transfer matrix of the periodic XXX chain
is not invariant under (2.22):

tr(RN,0(u)RN−1,0(u) . . . R1,0(u)) 6= tr(R1,0(u)R2,0(u) . . . RN,0(u)). (2.23)

Indeed, it is easy to see from the explicit form of the local conserved quantities of the XXX
chain (see [1]), that the logarithmic derivatives oftc(u) of odd degrees (corresponding to
charges with an even number of spins) do not change under (2.22), while those of even
degree (corresponding to odd number of spins) change sign.

In contrast, the transfer matrix of the open XXX chain is invariant under the operation
(2.22). Using

R−1
n,0(−u) = − 1

1 + u2
Rn,0 (2.24)

to(u) can be written in the form

to(u) = tr(RN,0 . . . R1,0(u)R−1
1,0(−u) . . . R−1

N,0(−u)

= (−1)N

(1 + u2)N
tr(RN,0(u) . . . R2,0(u)R2

1,0(u)R2,0(u) . . . RN,0(u)). (2.25)

Under (2.22), it transforms as

to(u) → (−1)N

(1 + u2)N
tr(R1,0(u) . . . RN−1,0(u)R2

N,0(u)RN−1,0(u) . . . R1,0(u)) (2.26)

which, due to the cyclic property of the trace, is equal to (2.25). This symmetry excludes
thus the possibility of building-up the bulk density ofQo

2m+1 from the densities of odd-
spin chargesQc

2m+1 since their sign is changed under (2.22). Hence, there are no odd-spin
charges for the open XXX chain.

The above argument for the spin-1
2 XXX chain may be similarly applied to the open

XYZ chain. As before, the key step is to observe that, forn even, (2.16) and (2.12) both
contain the same local leading term withn spins interacting. In the XXX case, one could
use the completeness property of the system of charges generated by the transfer matrix
of the periodic chain to show that the bulk density in the open case must coincide with
the density of the periodic chain. To our knowledge, the completeness of the system of
charges (2.10) for the general XYZ case has not been established. However, considering
the infinite limit of the open chain, one may conclude that the bulk density of the conserved
charge (2.10) must coincide with the density of the corresponding closed chain expression,
modulo the densities of additional conserved charges (which do not have to be generated
by the transfer matrix (2.2)). Therefore, the set of conserved quantities generated from the
transfer matrix still has the general structure (2.19), but the bulk density may now,a priori,
contain additional contributions. Forn odd, there is non-spin local term in (2.16), and
in consequence the bulk density ofQ2m+1 must vanish. As for the XXX case, this can
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be viewed as a consequence of the chain reversal symmetry (2.22). Recall that the basic
R-matrix of the XYZ model satisfies the unitarity requirement

R(u)R(−u) = ρ(u)I (2.27)

whereρ(u) is some scalar function. Using (2.27), the transfer matrix of the open XYZ
chain can be rewritten in a form which is manifestly invariant under (2.22):

to(u) = tr(RN,0(u) . . . R2,0(u)R1,0(u)R−1
1,0(−u)R−1

2,0(−u) . . . R−1
N,0(−u))

= 1

ρ(u)N
tr(R1,0(u) . . . RN−1,0(u)R2

N,0(u)RN−1,0(u) . . . R1,0(u)). (2.28)

Note that the above argument does not exclude a possible existence of additional odd-spin
conserved charges not given by the formula (2.10). Such a situation indeed exists for the
XY model (see section 4). However, this is not expected in the non-degenerate XYZ case,
for which the system of charges generated from the transfer matrix is likely to be complete.

3. The calculation of the conserved charges for the open XXX model

The model-defining Hamiltonian for the XXX chain with free open boundaries is†

H2 =
N∑

i=1

σi · σi+1 (3.1)

whereσ stands for the vector(σ x, σ y, σ z), σ ’s being the usual Pauli matrices. As we have
seen in the previous section, higher-order charges will have a bulk part and a boundary part.
It is convenient to redefine the charges so that in the bulk they will be described by the
Catalan tree pattern [1]. (This corresponds to a change of basis from{Qn} to {Hn} where
such thatHn does not contain any linear combination of lower orderHm’s. This change of
basis corresponds to taking linear combinations of the logarithmic derivatives of the transfer
matrix.) We thus look for charges in the form

Hn = H bulk
n + hL

n + hR
n (3.2)

wherehL
n andhR

n are boundary terms located at the left and right extremity of the chains,
respectively (their precise extension will be evaluated later); these are the unknowns to be
determined. With the above ansatz, we assume the chain to be sufficiently long to prevent
a mixing of boundary terms from opposite boundaries. Recall that the local integrals of
motion for the closed XXX model can be expressed as linear combinations of theF c

n,k ’s
defined as

F c
n,k =

∑
C∈C(n,k)

fn(C). (3.3)

C(n,k) stands for the set of alln ordered sites withk holes (i.e. the sites are not necessarily
adjacent) andC is some cluster among this set.fn(i1, i2, . . . , in) is defined as

f0 = f1 = 0

f2 = σi1 · σi2

f3 = (σi1 × σi2) · σi3

· · ·
fn = (· · · ((σi1 × σi2) × · · ·) · σin .

(3.4)

† From now on we omit the superscript ‘o’ from conserved charges.
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(Notice that the parentheses are nested toward the left.) The closed chain conservation laws
H c

n ’s are

H c
n = F c

n,0 +
[n/2]−1∑

k=1

k∑
`=1

αk,`F
c
n−2k,` (3.5)

where the coefficientsαk,` are the generalized Catalan numbers

αk,` =
(

2k − `

k − ` + 1

)
−

(
2k − `

k − ` − 1

)
. (3.6)

The bulk part of an open-chain conserved charge (of even order) is then given simply
by restricting the corresponding closed chain expression to those clusters which do not
‘jump over the border’. More precisely, letO(n,k) denote the subset ofC(n,k) obtained
by removing the clusters which overlap the borders. (For instance, forN = 6, O(3,3) =
(1, 2, 6), (1, 3, 6), (1, 4, 6), (1, 5, 6).) Denoting

F o
n,k =

∑
C∈O(n,k)

fn(C) (3.7)

H bulk
n is given by formula (3.5) withF c

n,k replaced byF o
n,k.

For the purpose of determining the boundary terms, we can focus on a single extremity,
or equivalently, consider a semi-infinite chain (N → ∞, so thati = 1, 2, . . .). The termhL

n

can then be characterized as follows. It is designed to cancel, in the commutator [H2, Hn],
those terms that would be cancelled for an infinite chain (i ∈ Z) by the contribution of the
‘link’ σ0 · σ1. In the infinite chain commutator [σ0 · σ1, H

(∞)
n ], these are precisely those

resulting terms that live in the semi-infinite chain, i.e. on sitesi > 1. Our first step is thus
to evaluate this commutator:

[H2, H
bulk
n ] = −[σ0 · σ1, H

(∞)
n ]|i>1 ≡ RL

n (3.8)

whereRL
n stands for left remainder. This expression is readily evaluated: it is a sort of

anti-boost, that is, the inverse of the boost action that generatesHn+1 from Hn. In the boost
operation, [H2, Hn] gives, in addition toHn+1, some lower order local charges. This turns
out not to be the case for the anti-boost calculation. We find the remarkably simple result

[σ0 · σ1, H
(∞)
n ]|i>1 = 4iH bulk

n−1 |L-bdry (3.9)

whereH bulk
n−1 restricted to the left boundary contains only those terms ofH bulk

n−1 whose leftmost
spin is at site 1. This is proved below.

Let us first introduce a schematic way of describing the related calculations. To represent
the monomialfn(i1, i2, . . . , in) we use a sequence of dots, with black dots corresponding
to occupied sites. For our purposes, we will only need sequences of dots based at site 0
(that is, the first dot representsi1 = 0). For instancef6(0, . . . , 5) and f4(0, 1, 3, 5) are
represented, respectively, by

f6(0, . . . , 5) = ((((σ0 × σ1) × σ2) × σ3) × σ4) · σ5 ∼ • • • • • • (3.10)

and

f4(0, 1, 3, 5) = ((σ0 × σ1) × σ3) · σ5 ∼ • • ◦ • ◦ • . (3.11)

The commutation relation

[σ0 · σ1, (σ0 × σ1) · σ2] = 4i(σ1 · σ2 − σ0 · σ2) (3.12)

will then be represented by the following diagram:

• • • = 4i ◦ • • − 4i • ◦ • . (3.13)
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The contraction in this diagram indicates taking the value of the commutator of the ‘link’
(i.e. theσ0 · σ1 operator) with thef polynomial represented by a sequence of dots. In the
following, we will implement the projection onto the semi-infinite chain by setting to zero
all spin factors at sitei 6 0, that is, by dropping the terms whose first dot is occupied. This
projection will be indicated by an arrow. For example, in (3.13) it amounts to setting to
zero the termσ0 · σ2:

• • • = 4i ◦ • • . (3.14)

Here are sample calculations of [σ0 · σ1, H
(∞)
n ]|i>1. For n = 4,

H
(∞)

4 = F4,0 + F2,1. (3.15)

It is clear that the only terms inH4 that will contribute to this commutator, after the
projection, are those whose leftmost spin is at site 0. The contribution ofF4,0 is

• • • • → 4i ◦ • • • . (3.16)

The commutator withF2,1 does not survive the projection:

• ◦ • = 2i • ◦ • → 0. (3.17)

The result is exactly the part ofF3,0 based at the left boundary, that is,

RL
4 = −4iH bulk

3 |L-bdry. (3.18)

For n = 5,

H
(∞)

5 = F5,0 + F3,1 (3.19)

we have

• • • • • → 4i ◦ • • • • (3.20)

and

• • ◦ • → 4i ◦ • ◦ • . (3.21)

We thus obtain

RL
5 = −4iH bulk

4 |L-bdry. (3.22)

Having worked out these examples, let us return to the proof of the general identity
(3.9). The contribution of a termFn,k to the commutator is clearly 4iFn−1,k restricted to
the left boundary: indeed, only monomials of the formfn(0, 1, . . . , n − 1) contribute in
the commutator and after commutation and projection, each such term is transformed into
4ifn−1(1, . . . , n − 1), which builds upFn−1,k restricted to clusters starting at site 1. (The
number of holes is unaffected in this process.) Ifn is odd, the structure of the Catalan tree
is not modified andH(∞)

n is mapped to 4i H bulk
n−1 |L-bdry. If n is even, the termsF2,k do not

contribute and we simply strip off the last row of the Catalan tree ofH(∞)
n to get the tree

of H
(∞)

n−1 , restricted to the left boundary.
Up to this point, we have only found what the boundary termshL

n have to cancel when
commuted withH2: we require

[H2, h
L
n ] = −RL

n = 4iH bulk
n−1 |L-bdry. (3.23)

The existence of a conserved charge is thus reduced to the existence a suitablehL
n satisfying

this equation.
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In this framework, the non-existence ofH3 is simply established: there are nohL
3, build

up with 1 or 2 spin factors, that could cancel 4iσ1 ·σ2 upon commutation withσ1 ·σ2+σ2 ·σ3.
The same argument also implies the non-existence of any odd charge, simply becauseH

(∞)

2n+1
contains a three-spin piece andhL

2n+1 would have to contain exactly the same counterterm
required to make a chargeH3.

Equation (3.23) implies that the boundary part inHn may contain only interactions of
up to n − 2 spins adjoining the boundary. For the spin-1

2 chain, the most general term
containing multi-spin interactions is a multilinear polynomial in spin variables, which can
be equivalently represented in the permutation basis as a linear combination of permutations
of the n − 1 spins at the boundary (with(n − 1)! arbitrary coefficients). These coefficients
are then fixed by enforcing the condition (3.23). The first two boundary terms are:

hL
4 = 4PL(1, 2) (3.24)

hL
6 = 4(−PL(1, 2, 3, 4) − PL(4, 3, 2, 1) + PL(1, 2, 4, 3) + PL(2, 1, 3, 4))

+8PR(1, 3) − 8PR(2, 3). (3.25)

A particularly useful set of polynomials in spin variables is provided by thefn(C)’s (where
C is an ordered cluster (i1 < · · · < in)), introduced above as the building blocks of the bulk
part of Hn. They can be expressed in terms of permutations as follows:

fn({i1, i2, . . . , in}) = 2(−i)n−2[. . . [[Pinin−1, Pin−1in−2], Pin−2in−3] . . . , Pi2i1] (3.26)

with

f2(i1, i2) = 2Pi1i2 − 1. (3.27)

In particular,

f3(i1, i2, i3) = 2i(PL(i1, i2, i3) − PL(i3, i2, i1))

f4(i1, i2, i3, i4) = −2(PL(i1, i2, i3, i4) + PL(i4, i3, i2, i1)

−PL(i1, i2, i4, i3) − PL(i3, i4, i2, i1))

f6(i1, i2, i3, i4, i5, i6) = 2(PL(i1, i2, i3, i4, i5, i6) − PL(i1, i2, i3, i4, i6, i5)

−PL(i1, i2, i3, i5, i6, i4) + PL(i1, i2, i3, i6, i5, i4)

−PL(i1, i2, i4, i5, i6, i3) + PL(i1, i2, i4, i6, i5, i3)

+PL(i1, i2, i5, i6, i4, i3) − PL(i1, i2, i6, i5, i4, i3)

−PL(i1, i3, i4, i5, i6, i2) + PL(i1, i3, i4, i6, i5, i2)

+PL(i1, i3, i5, i6, i4, i2) − PL(i1, i3, i6, i5, i4, i2)

+PL(i1, i4, i5, i6, i3, i2) − PL(i1, i4, i6, i5, i3, i2)

−PL(i1, i5, i6, i4, i3, i2) + PL(i1, i6, i5, i4, i3, i2)).

(3.28)

The boundary termshL
4 andhL

6 have a simple form when expressed in thefn(C) basis.
Define

fn,k(j) =
∑

C∈C(n,k)(j)

fn(C) (3.29)

whereC(n,k)(j) stands for the set of(n, k) clusters based at sitej (recall thatk indicates
the number of holes). Then we have

hL
4 = 2f2,0(1) (3.30)

hL
6 = 2f4,0(1) + 4f2,1(1) − 4f2,0(2). (3.31)
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One might hope that all the higher boundary terms could be similarly expressed in terms of
the polynomialsfn,k(j), which would significantly reduce the number of coefficients in the
ansatz for the boundary part ofHn. It is easily seen to hold for the leading boundary term:

hL
2m = 2f2m−2,0(1) + lower orders. (3.32)

Unfortunately, this is not true in general for the subleading terms as can be seen from the
exact expression forhL

8

hL
8 = 2f6,0(1) − 4f4,0(2) + 2f4,1(1) + 8f2,0(3) + 2f2,0(2)

+8f2,1(1) + 2f2,2(1) − 8f2,1(2) + 2f4(1, 3, 4, 5) − 2f4(1, 3, 2, 4). (3.33)

Since the last term corresponds to adisorderedcluster,hL
8 cannot be rewritten as a linear

combination of the simple polynomialsfn(C) (with C ordered). Higher-order boundary
terms are rather complicated and no simple pattern seems to emerge.

4. The XY chain and related models

In this section, we present the results for the conservation laws of the open chain of the XY
type. The basic open XY model is defined by the Hamiltonian

HXY =
N−1∑
j=1

λxσ
x
j σ x

j+1 + λyσ
y

j σ
y

j+1. (4.1)

As is well known, by the Jordan–Wigner transformation, the XY chain (regardless of the
boundary conditions) can be reduced to a free-fermionic theory. Not surprisingly, the
conserved charges for free-fermion chains have a particularly simple form. For periodic
boundary conditions, the conservation laws have been described in [7–10] (see also [1]).

An interesting feature of the closed XY case is the existence of two independent families
of conservation laws, which both persist when the model is perturbed by a perpendicular
(i.e. in thez-direction) magnetic field. As we will see shortly, when the closed chain is cut
open, only half of each family survives.

We consider first the particularly simple special caseλx = λy = 1 (the XX model). We
introduce the notation (forn > 2)

eαβ
n (j) = σα

j σ z
j+1 . . . σ z

j+n−2σ
β

j+n−1 (4.2)

and

e+
n (j) = exx

n (j) + eyy
n (j) n even

= exy
n (j) − eyx

n (j) n odd (4.3)

e−
n (j) = exy

n (j) − eyx
n (j) n even

= exx
n (j) + eyy

n (j) n odd (4.4)

with

e−
1 (j) = −σ z

j . (4.5)

For the periodic XX chain, the two mutually commuting families of conserved charges are

cH±
n =

N∑
j=1

e±
n (j). (4.6)

In particular, there are two ‘two-spin Hamiltonians’:
cH+

2 =
∑
j∈3

σx
j σ x

j+1 + σ
y

j σ
y

j+1 (4.7)
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cH−
2 =

∑
j∈3

σx
j σ

y

j+1 − σ
y

j σ x
j+1. (4.8)

cH+
2 is invariant under global parity transformations, i.e.σa

j → −σa
j , while cH−

n behaves
like a pseudoscalar†.

The open chain versions of these Hamiltonians

H±
2 =

N−1∑
j=1

e
(±)

2 (j) (4.9)

no longer commute with each other:

[H+
2 , H−

2 ] = 4iσ z
N − 4iσ z

1 . (4.10)

To each Hamiltonian, there corresponds a different infinite family of conserved charges.
Their bulk parts are given by

H±;bulk
n =

N−n+1∑
j=1

e±
n (j). (4.11)

The family of conservation laws for the scalar Hamiltonian is

H(1)
n = H+;bulk

n + h+;L
n + h+;R

n n even

H−;bulk
n + h−;L

n + h−;R
n n odd (4.12)

where

h±;L
n = −

[n/2]−1∑
k=1

e±
n−2k(k) (4.13)

h±;R
n = −

[n/2]−1∑
k=1

e±
n−2k(N − k + 1). (4.14)

For example,

h
−;L
3 = −e−

1 (1) = σ z
1

h
+;L
8 = −(e+

6 (1) + e+
4 (2) + e+

2 (3)) = −(σ x
1 σ z

2σ z
3σ z

4σ z
5σx

6 + σ
y

1 σ z
2σ z

3σ z
4σ z

5σ
y

6

+σx
2 σ z

3σ z
4σx

5 + σ
y

2 σ z
3σ z

4σ
y

5 + σx
3 σx

4 + σ
y

3 σ
y

4 ). (4.15)

Obviously,h±;R
n can be obtained fromh±;L

n via the chain reversal (2.22). The conservation
of the family H(1)

n

[H+
2 , H (1)

n ] = 0 (4.16)

can be verified by a straightforward calculation, using

[H+
2 , e±

n (j)] = ±2i(−1)n(e±
n+1(j − 1) − e±

n+1(j) + e±
n−1(j + 1) − e±

n−1(j)) (4.17)

where 1< j < N .
Similarly, one obtains the family of conservation laws for the open chain pseudoscalar

Hamiltonian

H(2)
n = H−;bulk

n + g−;L
n + g−;R

n n even

= H+;bulk
n + g+;L

n + g+;R
n n odd (4.18)

† cH−
2 is a special case of the Dzyaloshinski–Moriya interaction [11].
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where

g±;L
n =

[n/2]−1∑
k=1

(−1)k+1e±
n−2k(k) (4.19)

andg±;R
n is obtained fromg±;L

n by chain reversal. For example,

g
−;L
8 = e−

6 (1) + e−
4 (2) + e−

2 (3) = σx
1 σ z

2σ z
3σ z

4σ z
5σ

y

6 − σ
y

1 σ z
2σ z

3σ z
4σ z

5σx
6

−σx
2 σ z

3σ z
4σ

y

5 + σ
y

2 σ z
3σ z

4σx
5 + σx

3 σ
y

4 − σ
y

3 σx
4 . (4.20)

The two families{H(1)
n } and{H(2)

n } do not commute with each other. In particular, the
charges{H(2)

n } do not commute withH+
2 . Thus only half of the scalar and pseudoscalar

families of the periodic chain can be modified by adding the boundary terms so that they
still commute with the scalar Hamiltonian of the open chain. Both families are invariant
under a global spin rotation around thez-axis: it is easily checked that allH(i)

n ’s commute
with the generator of such rotation, thez-component of the total spin,

Sz =
N∑

j=1

σ z
j . (4.21)

Therefore, both families survive when the model is perturbed by a magnetic field termhSz.
Consider now the anisotropic case (XY model):

H =
N−1∑
j=1

(λxσ
x
j σ x

j+1 + λyσ
y

j σ
y

j+1). (4.22)

For the periodic XY chain, there are also two distinct families of conservation laws, all
commuting together. One sequence is given by

cHn =
N∑

j=1

hXY
n (j) (4.23)

with

hXY
n (j) = λxe

xx
n (j) + λye

yy
n (j) + λxe

yy

n−2(j) + λye
xx
n−2(j). (4.24)

This expression gives the bulk density of the conserved chargeHn for the open XY chain

Hn = H bulk
n + hL

n + hR
n (4.25)

H bulk
n =

N−n+1∑
j=1

hXY
n (j). (4.26)

The border part is given by

hL
n = −

[n/2]−1∑
k=1

{λ1−pk

x λpk

y [exx
n−2k(k) + exx

n−2k(k − 1)]

+λpk

x λ1−pk

y [eyy

n−2k(k) + e
yy

n−2k(k − 1)]} (4.27)

where

pk = 1
2(1 − (−1)k) (4.28)

with the convention

eαβ
m (0) = 0. (4.29)
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For example,

hL
8 = −λye

xx
6 (1) − λxe

yy

6 (1) − λxe
xx
4 (1) − λye

yy

4 (1) − λxe
xx
4 (2)

−λye
yy

4 (2) − λye
xx
2 (3) − λye

xx
2 (2) − λxe

yy

2 (3) − λxe
yy

2 (2). (4.30)

The commutativity of (4.25) with the Hamiltonian (4.22) can be established by a direct
calculation. The second family of conservation laws (containing the pseudoscalar XX
Hamiltonian) can be modified in a similar way to account for the anisotropic deformation.

In the presence of both the anisotropy and the magnetic field, i.e. for the open XYh
model

H =
N−1∑
j=1

λxσ
x
j σ x

j+1 + λyσ
y

j σ
y

j+1 +
N∑

j=1

hσ z
j (4.31)

except for the special casesλx = λy (XXh model) andλy = 0 (the Xh model, equivalent
to the Ising chain) there exist no counterterms that could be added to the bulk part ofH3 to
account for the open boundary conditions. The first non-trivial charge in the non-degenerate
case isH4, with

H bulk
4 =

N−3∑
j=1

(λxe
xx
4 (j) + λye

yy

4 (j)) +
N−2∑
j=1

(α3e
xx
3 (j) + β3e

yy

3 (j))

+
N−1∑
j=1

(α2e
xx
2 (j) + β2e

yy

2 (j)) + κ

N∑
j=1

σ z
j (4.32)

and

hL
4 = −λyσ

x
1 σx

2 − λxσ
y

1 σ
y

2 − h(1 + λx/λy + λy/λx)σ
z
1 (4.33)

where

α3 = −h(λx + 2λy)/λy (4.34)

α2 = −2λx − λ2
x/λy + h2/λx + h2/λy + λxκ/h (4.35)

andβi = αi(λx ↔ λy) (i = 2, 3), κ being arbitrary.
We end this section with a remark on the open Hubbard model

H = −2
∑

s=↑,↓

N−1∑
j=1

[(a†
j,saj+1,s + a

†
j+1,saj,s) + 4U

N∑
j=1

(nj,↑ − 1/2)(nj,↓ − 1/2) (4.36)

wherea
†
j,s andaj,s are fermionic creation and annihilation operator of an electron of spins

at sitej , satisfying the anti-commutation relation

a
†
j,sak,s ′ + ak,s ′a

†
j,s = δj,kδs,s ′ (4.37)

U is a coupling constant and

nj,s = a
†
j,saj,s . (4.38)

The integrability of this system has been established by means of the Bethe ansatz in [12].
As is well known, this model may be equivalently regarded as two coupled XX chains:

H =
N−1∑
j=1

[σx
j σ x

j+1 + σ
y

j σ
y

j+1 + τ x
j τ x

j+1 + τ
y

j τ
y

j+1] + U

N∑
j=1

σ z
j τ z

j (4.39)
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(whereσ andτ denote two independent sets of Pauli matrices). The local conserved charges
of the Hubbard model have been investigated in [1] for the case of periodic boundary
conditions. For free open boundaries, the first non-trivial charge is found to be

H4 = H bulk
4 + hL

4 + hR
4 (4.40)

with H bulk
4 given by the restriction of the corresponding closed chain expression (see [1]),

and

hL
4 = −(σ x

1 σx
2 + σ

y

1 σ
y

2 + τ x
1 τ x

2 + τ
y

1 τ
y

2 + 4Uσz
1τ z

1). (4.41)

Unlike the XY case, no odd-order charges exist.

5. Further generalizations and conclusions

Our initial objective for this work was to obtain a closed form expression for the conserved
charges of the open XXX chain, that is, to find the finite open chain deformation of the
Catalan tree pattern of the conserved charges for the infinite chain. This has not been
achieved, the main reason being that the spin polynomial basis used in the description of
the charges in the closed case is inadequate for open chains. This, however, could be seen
only after looking at the third non-trivial conservation law (H8). The difficulties in studying
the open chain conservation laws also come from the absence of a boost operator; there is
thus no recursive way of constructing the charges.

In a sense, the problem has been solved half-way: we showed that the expressions for
the charges split in two parts, a known bulk part and boundary corrections; we showed
further how these corrections can be calculated systematically (and wrote down the leading
boundary contribution).

Moreover, we have demonstrated that an open chain has half as many local conserved
charges as its closed version with an identical number of sites. When one cuts open a closed
spin chain, there appears an additional, symmetry (the chain reversal symmetry (2.22)), an
immediate consequence of which being that all odd-order charges cease to be conserved.
This is reminiscent of the reduction, by a factor 2, of the order of the two-dimensional
conformal group induced by a boundary: in the presence of a boundary, the holomorphic
and antiholomorphic Virasoro modes are no longer independent!

It should be stressed that the basic structure of the even-order conservation laws
generated from the transfer matrix, i.e. the separation into the bulk and boundary parts, is a
direct consequence of the construction (2.1)†. The structure (2.19) characterizes, therefore,
a large class of integrable chains with non-trivial boundary conditions. Moreover, in models
where the transfer matrix does not generate the complete family of conservation laws (in
the XY model for instance), the additional conserved charges are expected to exhibit the
same separation into bulk and boundary pieces.

The method for the calculation of the explicit expressions of the local conserved charges
in the open XXX model presented in section 3 can be applied to more general situations
in a straightforward way. For example, through a simple unitary transformation, the exact

† As shown in section 2, all of the conserved charges generated by the transfer matrix of an open chain may be
obtained in this way. Moreover, the chain reversal symmetry guarantees that our construction based on solving
commutativity constraints for a boundary part added to the bulk part of an open chain charge, cannot succeed for
odd orders. Therefore, our construction provides no more charges then the transfer matrix formalism. However,
it is not immediately clear whether our approach (or the transfer matrix construction) exhausts all the possible
conservation laws for open chain. The problem of completeness of the family of conserved charges generated
by the transfer matrix is a very difficult one and has not yet been solved for generic (closed or open) integrable
chains; it is certainly beyond the scope of our investigation.
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expressions ofH4, H6, and H8 can be translated into conserved charges for the XXZ
model with anisotropy parameter1 = −1 [2]. Similarly, by re-interpreting the vector
product and the polynomialsfn,k(j) in terms of a Lie algebra commutator, these expressions
apply directly to thesu(N) version of the XXX chain, as well as to the octonionic chain
[2]. All these chains are particular examples of a general algebraic model defined in [2],
characterized by three arbitrary constantsκ1, κ2 andκ3. For periodic boundary conditions
this model has been proved to be integrable provided thatκ1+κ3 = 2κ2. The same condition
assures also the integrability of this general model with free open boundary conditions. In
particular, the boundary term inH4 is

hL
4 = (2κ2/κ1)f2,0(1). (5.1)

Although we have considered mainly open chains with free boundary conditions, we
could treat more general boundary conditions in exactly the same way. Adding boundary
terms inH2 simply induces extra terms in the higher-order charges. For instance, by adding
the boundary termkσ z

1 to the Hamiltonian of the open XXX chain we find the following
extra terms inH4:

kσ x
1 σ z

2σx
3 + kσ

y

1 σ z
2σ

y

3 − kσ x
1 σx

2 σ z
3 − kσ

y

1 σ
y

2 σ z
3 − k2σx

1 σx
2 − k2σ

y

1 σ
y

2 − kσ z
1 + (3k − k3)σ z

1 .

(5.2)

Anisotropic versions of the XXX model can be studied in similar way; again, the only
difference is that the structure of conserved charges is more complicated. For instance, the
first non-trivial conserved charge for the XYZ chain with free open boundaries is

H XYZ
4 = H bulk

4 + hL
4 + hR

4 (5.3)

with H bulk
4 obtained from the corresponding closed XYZ expression (given in [1]) and

hL
4 = λx(λ

2
y + λ2

z)σ
x
1 σx

2 + λy(λ
2
x + λ2

z)σ
y

1 σ
y

2 + λz(λ
2
x + λ2

y)σ
z
1σ z

2 . (5.4)

For all these generalizations of the spin-1
2 XXX model, local conserved charges of odd

degrees are also absent†. As already mentioned, this result is encoded in the transfer matrix
formulation of the open chain models. Notice that when there are non-trivial boundary
conditions, hence non-trivial matricesX±, the spin reversal transformationσn ↔ σN+1−n

must be accompanied by the interchange ofK+ andK−. We expect that the same conclusion
will hold true for higher-spin chains and even non-homogeneous chains with different spin
representations at different sites (provide that the sequence of spacesV1, V2, . . . , VN is
invariant under the interchange of sitesn andN + 1 − n).

For the simpler XY model, we could obtain the exact expression for all the charges.
Here again, there is no open chain deformation for half of the closed chain conserved
charges, and as for closed chains, half of the charges cannot be obtained from the power
expansion of the transfer matrix.

It is worth mentioning that for a particular choice of boundary terms the XXZ chain
is endowed with quantum algebra symmetryUq [su(2)] [13]. Clearly, the corresponding
family of local conserved charges is then invariant under the action of this quantum algebra.
However, this additional symmetry does not seem to lead to a significant simplification in
the pattern of the conserved quantities.

In [14], we have proposed a simple integrability test for closed chains with short-range
interactions. This test essentially boils down to the existence of a conserved chargeH3 (more

† One might ask whether there are some boundary conditions such that the only charges present, including the
Hamiltonian, are of odd degree. However, this seems impossible: for example, for the XXX model with non-
periodic boundary conditions, the lowest-order odd chargesH bulk

3 and H bulk
5 cannot be deformed in a way that

preserves their mutual commutativity.



7650 M P Grabowski and P Mathieu

precisely, we conjectured that the non-existence ofH3 means non-integrability). This test
needs to be modified for open chains in an obvious way; here it is the existence ofH4 that
should characterize the class of integrable models.
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Appendix

For the sake of completeness, we give the basic commutators for the XXX model of the
type [σi · σi+1, fn(C)] (see equation (4.13) in [1]) in the graphical notation of section 3. In
the expressions below,· · · stand for an arbitrary number of filled (•) or open (◦) dots.

◦ • · · · • = 2i • • · · · • (6.1)

• ◦ · · · • = −2i • • · · · • (6.2)

• • · · · • = 4i ◦ • · · · • − 4i • ◦ · · · • (6.3)

• · · · • • · · · • = 2i • · · · ◦ • · · · • − 2i • · · · • ◦ · · · • (6.4)

• · · · • ◦ · · · • = −2i • · · · (• • ) · · · • . (6.5)

In the last equation, the parentheses indicate a modification of the usual nesting pattern,
e.g. the sequence• • (• • )• • , starting at site 1, say, corresponds to the polynomial
(((σ1 × σ2) × (σ3 × σ4)) × σ5) · σ6. Further basic commutators may be obtained applying
the chain reversal symmetry to the rules (6.1)–(6.3) and (6.5). In particular, we have

• · · · • ◦ = −2i • · · · • • (6.6)

• · · · ◦ • = 2i • · · · • • (6.7)

• · · · • • = 4i • · · · • • − 4i • · · · • ◦ (6.8)

• · · · ◦ • · · · • = 2i • · · · (• • ) · · · • . (6.9)
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